Exploiting Hessian matrix and trust-region algorithm in hyperparameters estimation of Gaussian process

نویسندگان

  • Yunong Zhang
  • William E. Leithead
چکیده

Gaussian process (GP) regression is a Bayesian non-parametric regression model, showing good performance in various applications. However, it is quite rare to see research results on log-likelihood maximization algorithms. Instead of the commonly used conjugate gradient method, the Hessian matrix is first derived/simplified in this paper and the trust-region optimization method is then presented to estimate GP hyperparameters. Numerical experiments verify the theoretical analysis, showing the advantages of using Hessian matrix and trust-region algorithms. In the GP context, the trust-region optimization method is a robust alternative to conjugate gradient method, also in view of future researches on approximate and/or parallel GP-implementation. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

Traversing non-convex regions

This paper considers a method for dealing with non-convex objective functions in optimization problems. It uses the Hessian matrix and combines features of trust-region techniques and continuous steepest descent trajectory-following in order to construct an algorithm which performs curvilinear searches away from the starting point of each iteration. A prototype implementation yields promising r...

متن کامل

On Optimization Algorithms for Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) is one of the most popular technique in econometric and other statistical applications due to its strong theoretical appeal, but can lead to numerical issues when the underlying optimization problem is solved. We examine in this paper a range of trust region and line search algorithms and focus on the impact that the approximation of the Hessian matrix has on...

متن کامل

A Globally Convergent Modified Conjugate-gradient Line-search Algorithm with Inertia Controlling

In this paper we have addressed the problem of unboundedness in the search direction when the Hessian is indefinite or near singular. A new algorithm has been proposed which naturally handles singular Hessian matrices, and is theoretically equivalent to the trust-region approach. This is accomplished by performing explicit matrix modifications adaptively that mimic the implicit modifications us...

متن کامل

Reduced Storage, Quasi-Newton Trust Region Approaches to Function Optimization

In this paper we consider several algorithms for reducing the storage when using a quasi-Newton method in a dogleg–trust region setting for minimizing functions of many variables. Secant methods require O(n2) locations to store an approximate Hessian and O(n2) operations per iteration when minimizing a function of n variables. This storage requirement becomes impractical when n becomes large. O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 171  شماره 

صفحات  -

تاریخ انتشار 2005